Factoring Polynomials

These notes are intended as a summary of section 1.2 (p. $15-19$) in your workbook. You should also read the section for more complete explanations and additional examples.

Factoring

A factor is any binomial that divides evenly into a polynomial, with no remainder. In this lesson, we will discuss two major concepts:

1. How can we determine if a binomial is a factor, without dividing?
2. If a binomial isn't a factor, how can we determine the remainder without dividing?

For each polynomial below, divide to determine whether the given binomial is a factor. Each binomial has the form $x-a$. Then evaluate the polynomial when $x=a$.
a) $3 x^{2}-2 x-1$
$x-1$
b) $3 x^{3}-8 x^{2}-x-2 \quad x-3$
c) $2 x^{4}-x^{3}-17 x^{2}-11 x+6 \quad x+2$

In each of the above examples, the remainder (found by dividing) and the value of the polynomial when $x=a$ were the same. This is called the remainder theorem.

Remainder Theorem

When a polynomial $P(x)$ is divided by a binomial, $x-a$, the remainder is $P(a)$.

Example 1 (sidebar p. 17)

Determine the remainder when $2 x^{4}-5 x^{3}-5 x^{2}+5 x+3$ is divided by each binomial.
a) $x-3$
b) $x+2$

In Example 1a, the remainder was zero. This means the divisor, $x-3$, is a factor of the polynomial. This special case of the remainder theorem is called the factor theorem.

Factor Theorem

A binomial, $x-a$, is a factor of the polynomial $P(x)$ if $P(a)=0$.

Example 2 (sidebar p. 18)

Which binomials are factors of $x^{3}-6 x^{2}+5 x+12$?
a) $x+1$
b) $x-3$
c) $x-4$
d) $x+4$

From Example 2, there are three factors of $x^{3}-6 x^{2}+5 x+12: x+1, x-3$, and $x-4$. The product of these factors is the original polynomial.

$$
(x+1)(x-3)(x-4)=x^{3}-6 x^{2}+5 x+12
$$

Notice that the constant term in each binomial is a factor of the constant term in the polynomial. That is, each of $-1,3$, and 4 is a factor of 12 . This leads to the factor property.

Factor Property

If $x-a$ is a factor of a polynomial, then a is a factor of the constant term in the polynomial.
Example 3 (sidebar p. 19)
Factor fully: $3 x^{3}-4 x^{2}-5 x+2$

Steps:

1. Use the factor theorem to find one factor.
2. Use synthetic division and write the division statement.
3. Factor the quadratic (if possible) or repeat steps 1 and 2 as necessary.

Homework: \#4-8, 9 (factor completely), $10-12$ in the exercises (p. $20-25$). Answers on p. 26.

